Discovery of SMAD4 promoters, transcription factor binding sites and deletions in juvenile polyposis patients
نویسندگان
چکیده
Inactivation of SMAD4 has been linked to several cancers and germline mutations cause juvenile polyposis (JP). We set out to identify the promoter(s) of SMAD4, evaluate their activity in cell lines and define possible transcription factor binding sites (TFBS). 5'-rapid amplification of cDNA ends (5'-RACE) and computational analyses were used to identify candidate promoters and corresponding TFBS and the activity of each was assessed by luciferase vectors in different cell lines. TFBS were disrupted by site-directed mutagenesis (SDM) to evaluate the effect on promoter activity. Four promoters were identified, two of which had significant activity in several cell lines, while two others had minimal activity. In silico analysis revealed multiple potentially important TFBS for each promoter. One promoter was deleted in the germline of two JP patients and SDM of several sites led to significant reduction in promoter activity. No mutations were found by sequencing this promoter in 65 JP probands. The predicted TFBS profiles for each of the four promoters shared few transcription factors in common, but were conserved across several species. The elucidation of these promoters and identification of TFBS has important implications for future studies in sporadic tumors from multiple sites, and in JP patients.
منابع مشابه
Discovery of the BMPR1A promoter and germline mutations that cause juvenile polyposis.
Juvenile polyposis (JP) is an autosomal dominant hamartomatous polyposis syndrome where affected individuals are predisposed to colorectal and upper gastrointestinal cancer. Forty-five percent of JP patients have mutations or deletions involving the coding regions of SMAD4 and BMPR1A, but the genetic basis of other cases is unknown. We set out to identify the JP gene in a large kindred having 1...
متن کاملGastric and duodenal polyps in Smad4 (Dpc4) knockout mice.
The SMAD4 (DPC4) gene was initially isolated as a candidate tumor suppressor from the convergent site of homozygous deletions on 18q in a panel of pancreatic carcinoma cell lines. It encodes a common cytoplasmic signaling molecule shared by the transforming growth factor-beta, activin, and bone morphogenic pathways. We recently inactivated its mouse homologue Smad4 and demonstrated its role in ...
متن کاملAnalysis of genetic and phenotypic heterogeneity in juvenile polyposis.
BACKGROUND Juvenile polyposis syndrome (JPS) is characterised by gastrointestinal (GI) hamartomatous polyposis and an increased risk of GI malignancy. Juvenile polyps also occur in the Cowden (CS), Bannayan-Ruvalcaba-Riley (BRRS) and Gorlin (GS) syndromes. Diagnosing JPS can be problematic because it relies on exclusion of CS, BRRS, and GS. Germline mutations in the PTCH, PTEN and DPC4 (SMAD4) ...
متن کاملSMAD4 mutation and the combined syndrome of juvenile polyposis syndrome and hereditary haemorrhagic telangiectasia.
Juvenile polyposis syndrome (JPS) and hereditary haemorrhagic telangiectasia (HHT) are autosomal dominant disorders with characteristic clinical phenotypes. Recently, reports of the combined syndrome of JPS and HHT have been described in individuals with mutations in the SMAD4 gene, whose product-SMAD4-is a critical intracellular effector in the signalling pathway of transforming growth factor ...
متن کاملJuvenile polyposis syndrome
Juvenile polyposis syndrome (JPS) is an autosomal dominant predisposition to the occurrence of hamartomatous polyps in the gastrointestinal tract. Diagnosis of JPS is based on the occurrence of numerous colon and rectum polyps or any number of polyps with family history and, in the case of juvenile polyps, their occurrence also outside the large intestine. The JPS is caused by mutations in SMAD...
متن کامل